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A constraint to potato production and
global food security worldwide

The disease has increased in incidence,
geographical and host range



Spread of
Phytophthora
Infestans

Spread by sporangia — spread in
air — 100’ kilometers




Late blight epidemics in the US in 2009
Emergence of US-22 strain

» Climate change — rainy season
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Outbreak of Fungus Threatens Tomato Crop
By JULLA MOSKIN

A highly contagious fungus that destroys tomato plants has quiekly spread to nearly every state in the Northeast and the mid-Atlantic, and the weather over the next week may
determine whether the outbreak abates or whether tomato crops are ruined, according to federal and state agriculture officials.

The spores of the fungus, called late blight, are often present in the soil, and small outbreaks are not uncommon in August and September. But the cool, wet weather in June and the
aggressively infectious nature of the pathogen have combined to produce what Martin A. Draper, a senior plant pathologist at the United States Department of Agriculture, deseribed as
an “explosive” rate of infection.

‘William Fry, a professor of plant pathology at Cornell said, “I've never seen this on such a wide scale.”

Astrain of the fungus was responsible for the Irish potato famine of the mid-19th century. The current outbreak is believed to have spread from plants in garden stores to backyard
‘gardens and commercial fields. If it continues, there could be widespread destruction of tomato crops, especially organic ones, and higher prices at the market.

By DAN BARBER
Published- August 8, 2009

E SIGNINTO “Locally grown tomatoes normally get $15 to $20 a box” at wholesale, said John Mishanec, a pest management specialist at Cornell who has been visiting farms and organizing
RECOMMEND emergency growers’ meetings across upstate New York. “Some growers are talking about $40 boxes already.” Tomatoes on almost every farm in New York’s fertile “Black Dirt” region
T 't NY in the lower Hudson Valley, he said, have been affected.
arrytown, N.Y.
T i E twirer

Professor Fry, who is genetically tracking the blight, said the outbreak spread in part from the hundreds of thousands of tomato plants bought by home gardeners at Wal-Mart, Lowe’s,
Home Depot and Kmart stores starting in April. The wholesale gardening company Bonnie Plants, based in Alabama, had supplied most of the seedlings and recalled all remaining plants
starting on June 26. Dennis Thomas, Bonnie Plants’ general manager, said five of the recalled plants showed signs of late blight.

“This pathogen did not come from our plants,” Mr. Thomas said on Wednesday. “This is something that has been around forever.”

Mr. Draper said the diseased seedlings. found in stores as far west as Ohio. were at least one source of the illness. but. he added. “It’s possible that we are looking at multiple




USABIight.org —Disease alerts
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Genotype Frequencies by Year -
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New diagnostics to identify P. infestans

LAMP Assays and Sensors

 LAMP primers can be designed to be
specific to a particular pathogen

« Rapid protocol for field identifications

« Amplification product visualized in the
field with visual nucleic acid stains (e.qg.
SYBR green or HNB)

« Can be adapted to lateral flow
devices(LFDs)

Samples with SYBR green. The three
samples on the left are positive

Ristaino et al., 2019. Plant
Disease First Look



Sensors for plant disease
detection in the field

Volatile Organic Jean Ristaino Qingshan Wei
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Li et al, 2019. Nature Plants 5:856-866 .
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Classification accuracy: ~93%

(2 errors out of 28 samples tested in total)

Li, Z. et al.,

2019. Noninvasive Plant Disease Diagnostics Enabled by Smartphone-
Based Fingerprinting of Leaf Volatiles. Nature Plants 5:856-866



Pathogen Genome Sequenced
o

Genome is highlk{ .
expanded —repetitive -75%

Effector diversity —
Avirulence proteins
needed to overcome host i
resistance e

e a1 rrady
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What is driving expansion?
Breeding?

Pathogen/population
genomics and databases

Haas, B. J., et al. 2009. Nature 461:393-398



S
Big questions about historical P,

Infestans

* What lineage caused the famine?

* Where did it come from? SA or Mexico

* Has this pathogen always had a large genome?
* How different is effector diversity?

e Clonal or sexual?

 Are historical genotypes still circulating?

* Did same lineage cause disease in the US and
Europe?


Presenter
Presentation Notes
Potato breeding efforts 
Given we know something about avirulence genes, were they different?


Over 1200 samples of P. infestans in
mycological herbaria

Jean in Royal Botanic Gardens
Herbarum Kew 2001 (above) ,

. | Farlow Herbarium, Harvard, 2003
| (below)
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How different is modern P. infestans
genome from the genomes of historic
P. infestans

N> 1198. Botrytis fallax Desyaz.

Desnaz. Pl. crypt. de France, n.° 1992, — Kx. Rech. FI, crypt. des Fland., 3¢ cent., pag. 45, n.* 85,
— Botrylis infestans Mont. — Bolrylis vastatrix Lib, — Pritchardia solani Muhlenb. — Choléra de la
Pomme de terre.

Sur les feuilles languissantes du Solanum tuberosum, aux environs d’Audenarde. (M.r TOSQUINET.)



Genome evolution of P. infestans Collaboration with
Univ. Copenhagen
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Figure 1 | Maximum-likelihood phylogram of P. infestans genomes from the first historic outbreaks of disease and later outbreaks. Nodes are labelled
with their support values from 100 bootstrap replicates. The scale bar indicates a branch length of 0.2 nucleotide substitutions per site

*Highly supported monophyletic clade for historic samples (shown in red)

Martin, M. D. et al. 2013. Nat. Commun. 4:2172 doi: 10.1038/



Fewer effectors in historic P. infestans

Historical

1845 (green) and Pi1889 (blue)
Modern

T30-4 (orange) - outer ring; US-22 (red); US-23 (purple); US-8 (yellow);
13_AZ2 (light purple)

» Effectors deleted in gene sparse
. TElgflelris

» Avirulence genes considered important
for pathogenesis were absent in
historic genomes.

_ . Expansion of effectors over time
/1 » Virulent form of Avr2 and Avr3a were
absent in historic samples

» Suggests that the pathogen has
evolved in response to human actions

like breeding disease-resistant
potatoes.

Figure 2 | Visualization of sequencing coverage distribution across all
reference RXLR effectors. Bar heights represent the mean-normalized
coverage of 583 reference RXLR effector genes in the resequenced
genome of a particular sample).



Mitochandrial genome
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Genomic characterization of South
American Phytophthora hybrid mandates
reassessment of geographic origin of
Phytophtora infestans. Martin et al, 2015.
Mol. Biol. Evol. 33:478-491

Mitogenomes

Herb-1 lineage persists in P andina (la)
from S. betaceum (red)

Divergence of Herb-1 mt lineage
Herb-1 mtDNA lineage not strictly
associated with FAM lineages of P,
infestans

Nuclear genomes - 6 lineages

P. andina shows mixed ancestry with
famine lineages and outgroup species
indicating hybrid, basal in tree
Famine era lineages form highly
supported sister clade at base of tree
US-1 and Mexican lineages diverged
later
Modern Mexican lineages and US
aggressive lineages — admixture- MX
likely source of some AGG lineages
Modern SA lineages most derived
Ancestral lineages of the pathogen may
be on wild Solanum hosts in SA



Did 19t" century P. infestans in
‘|the US migrate to Europe?
7 « Late blight first to US in 1843
' ~le Reports in Europe and Ireland

i 1843
| ) by the fall 1845
N s ” 2 ;341 "
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Fig. 1. Approximate extent of potato blight attacksin the United States and Canada during
184345 (after Stevens)
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Fam-1 SSR lineages caused historic late blight

K=4 based on examination of Ln P(D).
« US/EU historic lineages cluster into one group

* The oldest South American samples from Colombia ? . 7 pr .
similar to historic US and EU populations. .,_:_.--J_-'-__ _, :
« US-1 (Ib) lineage forms a second group i X o =
« South American (SA) and Irish lineages form a third o ¥
group. z = N
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 Central American, Mexican and Modern US o b 'l""‘o
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Conclusions

Largest populations genomics study to date on a Phytophthora
species

At least two historic mitochondrial lineages were introduced to
historical Europe

Hybridization between parents of P. andina (one is P. infestans and
other unknown parent) must have occurred in Andes where they
share a host range.

The most basal P. infestans like haplotypes survive within P
andina, found in the highlands of Peru and Ecuador

Clonal lineages of P. andina and P. infestans diverged earlier than
Mexican lineages

Most modern aggressive lineages (except US-23) derived from MX
P. infestans jumped from wild host to S. tuberosum in MX



-Tree Based Alignment Selector Tools—
P. infestans global lineages

* Allison Coomber-

AgBioFews PhD

N\ NS student

&) o ' « Montana Knight-
Bioinformatics

« Amanda Saville

« Thanks to Ignazio
Carbone- T-Bas and
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Tree Based - Phytophthora Phylogeny- evolutionary
placement of unknown species multilocus genealogy
Over 140 species described

An expanded phylogeny for the genus Phytophthora
Xiao Yang', Brett M. Tyler?, and Chuanxue Hong'

THampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA; corresponding author e-mail:

yxiao9@vt.edu

“Center for Genome Research and Biocomputing, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331,

USA

Abstract: A comprehensive phylogeny representing 142 described and 43 provisionally named Phytophthora species Key words:

is reported here for this rapidly expanding genus. This phylogeny features signature sequences of 114 ex-types and oomycetes

numerous authentic isolates that were designated as representative isolates by the originators of the respective species. systematics

Multiple new subclades were assigned in clades 2, 6, 7, and 9. A single species P. lilii was placed basal to clades 1 to taxonomy

5, and 7. Phytophthora stricta was placed basal to other clade 8 species, P. asparagi to clade 6 and P. intercalaris to evolution

clade 10. On the basis of this phylogeny and ancestral state reconstructions, new hypotheses were proposed for the plant pathology
y history of sy jial papillation of F species. Non-papillate ancestral species

were inferred to evolve through separate evolutionary paths to either papillate or semi-papillate species.

Article info: Submitted: 8 June 2017; Accepted: 31 October 2017; Published: 21 November 2017.




Solving global late blight

Population genomics

* Role of hybridization, host jumps and migration in spread of this and other
Phytophthora diseases

» Use next generation sequence data sets and populations genomic tools to
study global population biology

» Collaborative sharing of datasets — open data and queryable database
Surveillance Technologies
« Use text and data mining and natural language processing to map outbreaks

» Deployment of a Global Blight disease alert and genotyping system - still
segmented

» Use sensor and ICT technology to deliver disease outbreak information into
surveillance systems smart phones — crowd sourcing — with geospatial
analytics

Host resistance

 Deploy resistant varieties on a landscape level - many countries still growing
susceptible varieties

» Deploy transgenic or gene edited potatoes/tomatoes with stacked R genes in
areas where fungicide use is limited or impacted negatively by high rainfall

Strengthen phytosanitary standards
» Improve seed certification programs and clean seed distribution
» Improve diagnostic capabilities of partner institutions in the developing world

» Build human capacity through training next generation of plant science
students broadly
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